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Abstract—The two-dimensional transient response of gas-to-gas cross-flow heat exchangers is investigated
analytically by the method of a single Laplace transform for arbitrary time variations of the primary fluid
inlet temperature. Analytical solutions for transformed temperature distributions of the core wall and both
fluids are presented in the form of a power series with the heat capacity ratios, number of transfer units,
heat transfer resistance and flow capacitance ratios. The transformed temperatures of the core wall and
both fluids are easily inverted to the physical quantities by using the numerical inversion scheme of the
Laplace transform. As compared with other analytical solutions, the present method has good accuracy
and efficiency.

INTRODUCTION

THE TRANSIENT response of cross-flow heat exchangers
is of increasing interest in many industrial fields, such
as aircraft gas turbines, air-conditioning systems,
phosphoric acid fuel cell power units and dirty gas
applications. It is important to study the dynamic
behaviours of a cross-flow heat exchanger in order
to obtain a correct and reliable design, control and
operation for reducing the energy waste and prevent
danger and expensive off-lines. A fast mathematical-
simulation scheme (with acceptable engineering accu-
racy) capable of predicting the transient response of
the system is always desired for correct design of heat
exchangers.

A considerable effort has been made in investigating
the steady-state solutions for temperature profiles of
cross-flow heat exchangers [1]. However, the transient
response of cross-flow heat exchangers has received
very little attention owing to its complexity. Some
authors [2-7] proposed numerical solutions of these
problems in which the fluid-to-wall capacity ratio is
equal to zero or the wall capacitance is large. Dusin-
berre [3] presented the first paper to deal with the
transient behaviours of gas-to-gas cross-flow heat
exchangers with both fluids unmixed. He applied the
finite difference method to determine transient solu-
tions of gas temperatures but only one specific case
was considered. Afterward, Yamashita er al. [4] also
calculated the outlet temperature responses of the
cross-flow heat exchangers without fluids mixed by
using the finite difference method. They further inves-
tigated the effects of an initial condition and various
parameters on the outlet temperature response. How-
ever, the application of the finite difference method to
such problems has a severe limitation on the step-size.
On the other hand, this method will tend to require

an excessive amount of computer time when only the
outlet temperature responses at a specific time or at a
specific position are given. Myers ez al. [5] employed
an integral technique to the analysis of gas-to-gas
cross-flow heat exchanger with one mixed fluid. They
obtained an approximate solution of the outlet fluid
temperatures for a unit step change in the inlet tem-
perature of the mixed fluid. Romie [6] gave the tran-
sient mixed mean temperatures of the two gases leav-
ing a cross-flow heat exchanger for a unit step change
in the entrance temperature of either gas. Solutions
were obtained by the double Laplace transforms
method and were applied to the single-pass cross-flow
exchangers without mixing of gases. Spiga and Spiga
[2] and Gvozdenac [7] investigated the two-dimen-
sional transient behaviours of gas-to-gas cross-flow
heat exchangers with arbitrary initial and inlet con-
ditions by using the two- and threefold Laplace trans-
form, respectively. The complexity of the inversive
task of the two- and threefold Laplace transform is
known to all. On the other hand, it is difficult to invert
the transformed temperatures of the core wall and
both fluids to the physical quantities when the two-
and threefold Laplace transform are applied. In
addition, it can be found that none of them [2, 6,
7] employed any numerical scheme in inverting the
physical domain. In cases with heavier restrictions,
results are expressed in more or less explicit formulas
which may or may not be convenient to compute.
However, in more general cases, the results in the
transformed domain are so complex that it is difficult
to invert them to the physical quantities.

The present work analyses the transient behaviours
of gas-to-gas cross-flow heat exchangers by using the
method of the single Laplace transform with respect
to time. The aim of this work is to develop a straight-
forward computer code for such problems. The trans-
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heat transfer surface

specific heat

flow capacitance ratio

heat transfer coefficient
exchanger length

mass of exchanger

mass flow rate

dimensionless exchanger length
number of transfer units

heat transfer resistance ratio
Laplace transform parameter
dimensionless time variable

~ xRz =z 3
~
=

NOMENCLATURE

T dimensionless temperature
T transformed dimensionless temperature
x, v dimensionless space variables.

Greek symbols

&, ¢ space variables

T time variable.
Subscripts

a prime fluid

b secondary fluid
w solid wall.

formed temperatures expressed in the form of a power
series are specialized in order to describe step, ramp
and exponential responses. Owing to these trans-
formed temperatures expressed in the form of a power
series with regularization, it is evident that they are
easily written in a computational program. The trans-
formed temperatures of the core wall and both fluids
in the present work are easily inverted to the physical
quantities using the numerical inversion method of
the Laplace transform proposed by Honig and Hirdes
[8]. It can be found from the present analysis that the
temperature responses of the core wall and both fluids
at a specific time and position can be calculated using
the present technique without any difficulty. For this
case, the present method has considerable savings in
computer time. In addition, the power series in the
present work has a fast rate of convergence. A com-
parison of the present solutions and those given by
Spiga and Spiga [2] is made. No difference between
them is found. This conclusion shows that the present
method has good accuracy and efficiency.

ANALYSIS

The dynamic response of cross-flow heat ex-
changers with walls separating the two fluid streams
is investigated. Stream ‘a’ flows through a set of tubes
or plates, arranged in a bank, however stream ‘b’
threads its way through the spaces at right angles to
the bank. The mathematical model is developed resort-
ing to the simplifying assumptions as follows [2, 6, 7] :

(a) neither fluid is mixed ;

(b) the physical properties and the fluid capacity
rates are independent of time, position and tem-
perature ;

(c) the thermal conductances on both sides are
constant and inclusive of wall thermal resistance and
fouling ;

(d) the exchanger shell or shroud is adiabatic;

() the fluid velocity is constant in each flow pass-
age;

(f) conduction through the fluid is negligible ;

(g) heat transfer rate per unit area and surface con-
figurations are constant ;

(h) the heat generation and viscous dissipation
within the fluids are negligible ;

(1) the ratios of the thermal capacities of both fluids
to the core wall thermal capacity are negligible, i.e. it
is typical for gas-to-gas exchange units.

The dimensionless space and time-independent
variables are defined for generating the equations of
such problems as

_ (ha"),
= Me, " (12)
UZOX:
= (oL, (1t
L B
r= (me)oLy (1o

Then, applying the energy equation to both fluids and
the wall, we have three simultaneous partial differ-
ential equations in the coordinate system [2]

oT,
at +(1+R)Tw = Ta+RTh (23.)
oT,
2 +7~(. = Tw (2b)
ox
0T,
SOy, =T, 20)
dy

fortr=20,0<x<N,and0O <y <N,
The corresponding initial and inlet conditions of
equations (2) are given as

TW(X,y,O) = Ta(x?y’ 0) = Tb(xvya 0) =0 (33)
T.(0,y,0) = (1) (3b)
To(x,0,1) = 0 (o)

where the dimensionless physical parameters R, E, N,
N, and NTU are defined respectively as
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(n4%),

K=, @
E= E}':g" (4b)
N, = ((%) )
N, = %:T)l (4d)

1 e
NTU = {(mc)m‘“ [m * (hA*)b]} 4

where it is seen from equations (4) that only three of
them are independent.

The above model equations show that only the inlet
condition of one fluid is perturbed. For simplicity,
assume that such a perturbation is uniform in the
plane of the inlet section.

MATHEMATICAL FORMULATION

The Laplace transform of Ta(x, y, f) corresponding
to the dimensionless time with the complex parameter
s and its inversion formula are defined as

Ta(x,y,5) = L~ {Ta(x,p,0)} = J. Tolx,y, ) e~ dt
it

(52)
Ta(x,y, 1) = L~ {Ta(x, y,5)} (5b)

where « = w, a, b. s is the Laplace transform par-

ameter.
Taking the Laplace transform of equations (2), (3b)
and (3c) with initial condition (3a) yields
~ 1 n R ~
Tu= 1+R+sTa+ I+R+STb (6a)
T, o .
24T, =T, (6b)
oy Ty=1T, (6c)

with the transformed boundary conditions

1.0,y,5) = ¢(s) = L p@e"dr  (6d)

T(x,0,5) = 0. {6e)

Substitution of equation (6a) into equations (6b) and
(6¢) can reduce the problem to a set of first-order
partial differential equations as

T | 47, = BT, 7
ax + a ™ b ( a)
oT, o

o +CT, = DT, (7b)

where
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A=1 L ]
T T 1+4s+R
R
— 7
B 1+s+R (9
R
C=1-177r (7e)
D= ! (7)
T 1+s+R°

These equations are less complex than equations
(2) since they do not depend upon the dimensionless
time. Thus, the problem has now been reduced to
solve equations (7a) and (7b) for T, and T;,.

The function T,(x, y, s) can be expressed in the
form of a power series as described below

L) =60+ T . ®)

It is seen that equation (8) satisfies the transformed
boundary condition (6d).
Substituting equation (8) into equation (7a) gives

a0

- 1
Tb(x’y3 S) = E{ Z! ak(ys S)kxk_l

+4 [@(S) +§:1 aly, s)x"]}. ©)

Substituting equations (8) and (9) into equation
(7b) and collecting the coefficients of successive pow-
ers of x yields the following form :

da,

[d—y +Ca,—(BD— CA)q“J(s)]

& | dax. %3
+k;[ 3 +Cak+,—k+l(BD—-CA}

4 da | ,
+m€;]x =0. (10)

The expression of equation (10) implies that the
coefficients of all powers of x must vanish inde-
pendently. The vanishing of the coefficient of x*,
k = 0, in equation (10), gives the following recurrence
formula:

d
—df’—‘ +Ca, = (BD—CA)G (11a)
34
and
day . %
dy +Cak+; —m(BD—CA)
A dak
_md—y’ k=21 (11b)

Assume that the functions a,, k> 1, can be ex-
pressed as
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a(y.s) =fi(s)+pi(s)ec o
ax(3,8) = fo()+ (p2(s) +ga()y) e
as(y,5) = f3(8)+ (P + gy +riloyire ©

as(y,8) = f4(s)+ (pals) +q4(s)y

Fray? dsayHe 0 (12)

By the direct substitution of equations (12) into
equations {11) one obtains

f o BD A
Jils) =g
BD _
P8 =9 (13a)

1
fa(s) = c? (BD—CA)*§
|
pa(s) = '?"!'A'(P‘fz(s)

1
4:(5) = |, BDP\() (13b)

1

g1 (BD=CA)'G

S3(s) =
.
pals) = — 34 P—1s
_ lBD A
q5(s) =3 [72“’3"12
1
ri(s) = Qngqu (13c)
. 1 .
Jals) = 41c (BD—CA)'¢
|
Pa(s) = 4 A"¢—fa

A
q4(s) = BDPz‘Zqz

Bl o=

I A
ra(s) = 3 [4 BDqg;— 4 (2"3)]

!
sa(s) = 5.4 BDrs (13d)

1
fs(s) = 5i0° (BD—CA)’¢p

| .
ps(s) = — 51 Ap—fs

1 A
qs(s) = EBDP4— '§q4
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) = ) L enn oo, '
'55)'*2 3 Pa— 5(«’4)
11 A
s;(s):3 SBDr‘;f 5(334)
t<(s) = : BD
s9) =375 BDss (13¢)

Substituting equations (12} and (13) into equation
(8) and arranging yields

7~ﬁ(\ y.§) = G(s) {C’I_C AN -y
5 (BDxX 1AL
: L;( ¢ )k'klnzo (Cy) ]} (14)

_BD—-CA
= oo

where
X.

Substituting equation (14) into equation (7a) and
rearranging yields the result of T;(x, v, s) as

. D .
To(x, 1. 8) = @(s) c {e”+e' A -G

3 l BDX v : o )17
LEAET 5 e s

Substitution of equations (14) and (15) into equa-
tion (6a) yields 7', (x, y, s) as

Tw(.\', v, S) = D(ﬁ(é) {C" R
RS BDX ¢ 1 k- . N D
) |:kzl < e j k! ,,;, (€ ]} + Bg(s) I

1z /BDxY 1 & ]
x{c"—i—c ’““[ Y ("’*(; )/J Y (C}‘)”]},
A= 00N J e 4

(16)

ASYMPTOTIC BEHAVIOUR

1t is difficult to express equations (14)—(16) in terms
of elementary functions of ¢ analytically. However,
there are simple asymptotic solutions. Expansions for
small values of t can be deduced from the behaviour
of expressions (14)—(16) for |s| > 1. Thus, the asymp-
totic values of 7,, T, and T,, for small values of  are
given as

BDx
Tx,y,)=e¢ “ L' {(,5(5) (] 4 (\>}

BDx
—e L {—r(j\-(f)(s)} (17a)

Tt t) = [e—e “IL {d(s)D/C}  (17b)
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T,y =e™* L™ { (s)D(H—g—gf)}

—e Y Lwl {BDz (P( )}

e —e™* )L {G()BD/C}. (17c)

The above expressions are exact for small values of
¢, but they will not be of practical use when ¢ >» 1. The
steady-state temperatures of both fluids and the core
wall are determined by the behaviour of equations
(14)-(16) in the neighbourhood of the origin in the
cotaplex domain. For s — 0, equations (14)-(16) give

Rx
~ — ~(RX+y)/(l+R)
Tu(x,3,1) {1 Z (HR)‘
k-3

» (1{;’5 } lim {§(s)s}  (15a)

n=1

ey, 1) = {1 g RX+0)/(1+R) z (1ixR)‘
. D
WL (Tl}iﬁ)n}l% {E(P(S)s} (18b)

T(x,p ) = {l*e—mxm/(wk) i %(%)

k-1

> (w } lim {DGE)s}+ {1 e R ER

n= 1

FHICIEYES IR

(18¢c)

RESULTS AND DISCUSSION

The numerical inversion of Laplace transforms pro-
posed by Honig and Hirdes {8] can be applied to invert
the transformed temperatures T,, T, and 7., shown
in equations (14)~(16), to the results in the physical
quantitics. The method for the acceleration of con-
vergence, such as the Shanks transformation [9), may
be employed to calculate the sum of the series expan-
sions, shown in equations (14)-(16), when they are
slowly convergent. The explicit analytical expressions
for To(x, », 5), To(x,y,s) and T,(x, y, s) have been
processed for several meaningful choices of ¢(f) in
order to simulate the most common transient oper-
ations. In particular the step response (¢ = 1), ramp
response  {p = af) and exponential response
(¢ = exp (af)) will be considered. A much wider range
of possible transient responses is covered by these
results. In the illustrative examples, « is taken to be
unity in the ramp and exponential responses. The
parameters N, and N, are equal to 2. For the present
problem Spiga and Spiga [2] obtained the analytical
solutions and also showed the series representation of
the exponential response for R = 1. However, their
inversive work of the transformed temperatures is
complex and difficult. Moreover, their analytical
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results are limited in the present heavier restrictions,
as shown in equations (3).

It is seen that the series expansions in equations
(14)~(16) are very simple and regular. This statement
implies that the transformed results shown in equa-
tions (14)-(16) are easily expressed in a computational
program even though the value of ¢({) is arbitrarily
chasen. Thus, their numerical calculations are very
inexpensive in terms of computation time. Further-
more, the series representation of equations (14)—(16)
can be applied to obtain the overall output of the gas-
to-gas cross-flow heat exchangers for arbitrary choices
of ¢f7) without any difficulty. The asymptotic values
for ¢ — oo in the step response reproduced are in good
agreement with previous results given by Baclic and
Heggs (1] and Spiga and Spiga [2]. The exit tem-
peratures of 7, and T, corresponding to R =1 and
N, = N, = 2 are shown in Figs. 1-6 for the step, ramp
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Fic. 1. Qutlet temperature distribution of the primary fluid
for a step response with R = 1.
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F1G. 2. Qutlet temperature distribution of the secondary fuid
for a step response with R = 1.
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F1G. 4. Outlet temperature distribution of the secondary fluid
for a ramp response with R = 1.

and exponential responses, respectively. The results
1-4

for the step and ramp responses shown in Figs.

agree well with those contained in Figs. 7-10 of Spiga
and Spiga [2]. This conclusion implies that the present
method has good accuracy. The temperature of the
core wall is not expressed in the present paper.
However, it is not difficult to invert the transformed
temperature of the core wall T.(x, v, 5), as shown in
equation (18c), to the physical quantity by using the

numerical inversion of the Lanlace transform [R1 if

numerical inversion of the Laplace transform [8] if
T (x, y, t) is required.

The exit temperatures of 7, and T, for the step
response for R = 0.5 and 2 are respectively shown in
Figs. 7-10. Comparisons for these cases are imposs-
ible because there are no available data in the litera-
ture. However, it is seen that higher values of R imply
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FiG. 5. Outlet temperature distribution of the primary fluid
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F1G. 6. Outlet temperature distribution of the secondary fluid
for an exponential response with R == 1.

smaller (mc), and higher (h4*), for the fixed values
of N, N, (hA®) . Thus, the temperature

Vb U ju @G A7 IS, UIC WInperdiulc

at the outlet positions of both fluids will be increased
with decreasing the value of Rfor N, = N, = 2. These
resuits can be found from Figs. 7 to 10. This con-
clusion implies that the temperature response of
R = 0.5 is faster approaching the steady state than
that of R = 2. To avoid duplication, the effect of R
on the transient behaviours of T, and 7, for the ramp
tial responses will not be investigated.

and (mn\

and exponen

CONCLUSION

The two-dimensional transient response of gas-to-
gas cross-flow heat exchangers is investigated ana-
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Fi1G. 7. Outlet temperature distribution of the primary fluid
for a step response with R = 0.5.
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FiG. 8. Outlet temperature distribution of the secondary fluid
for a step response with R = 0.5.

lytically. The method of the single Laplace transform
method with respect to time in conjunction with the
power series technique is applied to obtain the numeri-
cal solutions of such a problem. It is seen that the
application of this technique to such problems is sim-
ple and can determine T,, T, and T, with regular
forms. Thus, the transformed temperatures are easily
expressed in a computational program for arbitrary
choices of ¢(f) and R without any difficulty.
Moreover, the present numerical calculations are also
very inexpensive in terms of computational time, and
the temperature responses of the core wall and both
fluids, at a specific time and position, can also be cal-
culated. The present results are compared with the
analytical results of Spiga and Spiga [2]. The present
method shows satisfactory results for the present
problem. It can be concluded that the present method
has good accuracy and efficiency.
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METHODE SIMPLE POUR LA REPONSE VARIABLE D’ECHANGEUR DE CHALEUR
A COURANTS CROISES GAZ-GAZ SANS AUCUN MELANGE

Résumé—On étudie analytiquement la réponse variable bidimensionnelle des ¢changeurs de chaleur a
courants croisés gaz—gaz en utilisant la méthode de la transformée de Laplace pour des variations tem-
porelles arbitraires de la température d’entrée du fluide primaire. Des solutions analytiques pour la
distribution de la température transformée de la paroi et de chaque fluide sont présentées sous la forme
d’une série de puissances avec le rapport des capacités thermiques, le nombre d’unités de transfert, la
résistance au transfert thermique et les rapports des débits calorifiques des fluides. Toutes les températures
transformeées sont aisément inversées pour obtenir les grandeurs physiques en utilisant le schéma dc
Pinversion numérique de la transformée de Laplace. Comparée 4 d’autres résolutions analytiques, la
méthode présente a bonne efficacité et précision.

EIN EINFACHES VERFAHREN ZUR BERECHNUNG DES DYNAMISCHEN
VERHALTENS EINES GAS-KREUZSTROMWARMEUBERTRAGERS OHNE
QUERVERMISCHUNG

Zusammenfassung—Das  zweidimensionale Ubergangsverhalten eines Gas/Gas-Kreuzstromwiirme-
ubertragers wird analytisch untersucht. Dabei wird das Verfahren einer einzelnen Laplace-Transfor-
mation fiir beliebige zeitliche Anderungen der anfinglichen Fluid-Eintrittstemperatur angewandt. Fiir
die transformierten Temperaturverteilungen an den inneren Wénden und in beiden Fluiden werden analy-
tische Losungen in Gestalt cines Potenzansatzes angegeben, abhidngig vom Verhiltnis der Wirme-
kapazititen, von NTU, vom Wirmeiibergangswiderstand und vom Verhiltnis der Wiirmekapazitits-
strdme. Die transformierten Temperaturen fir die Wande und die beiden Fluide koénnen leicht unter
Verwendung eines numerischen Inversionsverfahrens der Laplace-Transformation in den physikalischen
Bereich zuriicktransformiert werden. Im Vergleich zu anderen analytischen Losungen zeigt das vorgestellte
Verfahren hohe Genauigkeit und Effizienz.

IMPOCTOM METOJ ONAEJEJIEHUSA MEPEXOHON XAPAKTEPUCTUKH
TA30-T'A30BBIX MEPEKPECTHBIX TEIIJIOOBMEHHHUKOB

AmsoTamus—METOIOM OJHOKpaTHOTO nmpeobpa3opanus Jlannaca aHaIMTHYECKH HCCIEAYETCHS IBYyMED-
Hasl MEPEXO/IHAs XapaKTEPHCTHKA Ta30-Ta30BbIX NEPEKPECTHLIX TEMIOOGMEHHHKOB B CllyYae IPOH3BOJIb-
HBIX H3MEHCHHI TEMNEpaTyphi NEPBHYHOTO TEIUIOHOCHTENS Ha BXOHE. AHANHTHYECKHE PEUICHMA IS
n306paxkeHuii TEMNEPATYPBIX PACTIPEAENCHU CTEHKH K 00eHX pabouux Cpea NpeNCTABACHBI B BUME CTe-
NEHHBIX PANOB, BKIIOYAIOMMX OTHOLUEHHS TEMJIOEMKOCTEH H CONPOTHBJICHHE TEMIONEPEHOCY. ITH COOT-
HOLIEHHA B M30GPAXEHHAX JIErko OGPALIAIOTCA C HCHOJb30OBAHMEM YHCJIEHHOH CcXeMbl OOpalueHus
npeobpasopanns Jlannaca. [lo cpaBHeHMIO C JPYTHMH aHANMTHYECKHMM PELUCHHAMH NPENIOKEHHBIH
MeTO/1 06/1a11aeT BHICOKOH TOYHOCTBIO H 3b$EKTHBHOCTHIO.



