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Abstract-The two-dimensional transient response of gas-to-gas cross-flow heat exchangers is investigated 
analytically by the method of a single Laplace transform for arbitrary time variations of the primary fluid 
inlet temperature. Analytical solutions for transformed temperature distributions of the core wall and both 
fluids are presented in the form of a power series with the heat capacity ratios, number of transfer units, 
heat transfer resistance and flow capacitance ratios. The transformed temperatures of the core wall and 
both fluids are easily inverted to the physical quantities by using the numerical inversion scheme of the 
Laplace transform. As compared with other analytical solutions, the present method has good accuracy 

and efficiency. 

INTRODUCTION 

THE TRANSIENT response of cross-flow heat exchangers 
is of increasing interest in many industrial fields, such 
as aircraft gas turbines, air-conditioning systems, 
phosphoric acid fuel cell power units and dirty gas 
applications. It is important to study the dynamic 
behaviours of a cross-flow heat exchanger in order 
to obtain a correct and reliable design, control and 
operation for reducing the energy waste and prevent 
danger and expensive off-lines. A fast mathematical- 
simulation scheme (with acceptable engineering accu- 

racy) capable of predicting the transient response of 
the system is always desired for correct design of heat 
exchangers. 

A considerable effort has been made in investigating 
the steady-state solutions for temperature profiles of 
cross-flow heat exchangers [ 11. However, the transient 
response of cross-flow heat exchangers has received 
very little attention owing to its complexity. Some 
authors [2-71 proposed numerical solutions of these 
problems in which the fluid-to-wall capacity ratio is 
equal to zero or the wall capacitance is large. Dusin- 
berre [3] presented the first paper to deal with the 
transient behaviours of gas-to-gas cross-flow heat 
exchangers with both fluids unmixed. He applied the 
finite difference method to determine transient solu- 
tions of gas temperatures but only one specific case 
was considered. Afterward, Yamashita et al. [4] also 
calculated the outlet temperature responses of the 
cross-flow heat exchangers without fluids mixed by 
using the finite difference method. They further inves- 
tigated the effects of an initial condition and various 
parameters on the outlet temperature response. How- 
ever, the application of the finite difference method to 
such problems has a severe limitation on the step-size. 
On the other hand, this method will tend to require 

an excessive amount of computer time when only the 

outlet temperature responses at a specific time or at a 
specific position are given. Myers et al. [5] employed 
an integral technique to the analysis of gas-to-gas 
cross-flow heat exchanger with one mixed fluid. They 
obtained an approximate solution of the outlet fluid 
temperatures for a unit step change in the inlet tem- 
perature of the mixed fluid. Romie [6] gave the tran- 

sient mixed mean temperatures of the two gases leav- 
ing a cross-flow heat exchanger for a unit step change 
in the entrance temperature of either gas. Solutions 
were obtained by the double Laplace transforms 
method and were applied to the single-pass cross-flow 
exchangers without mixing of gases. Spiga and Spiga 

[2] and Gvozdenac [7] investigated the two-dimen- 
sional transient behaviours of gas-to-gas cross-flow 
heat exchangers with arbitrary initial and inlet con- 
ditions by using the two- and threefold Laplace trans- 
form, respectively. The complexity of the inversive 

task of the two- and threefold Laplace transform is 
known to all. On the other hand, it is difficult to invert 
the transformed temperatures of the core wall and 

both fluids to the physical quantities when the two- 
and threefold Laplace transform are applied. In 
addition, it can be found that none of them [2, 6, 

71 employed any numerical scheme in inverting the 
physical domain. In cases with heavier restrictions, 
results are expressed in more or less explicit formulas 
which may or may not be convenient to compute. 
However, in more general cases, the results in the 
transformed domain are so complex that it is difficult 
to invert them to the physical quantities. 

The present work analyses the transient behaviours 
of gas-to-gas cross-flow heat exchangers by using the 
method of the single Laplace transform with respect 
to time. The aim of this work is to develop a straight- 
forward computer code for such problems. The trans- 
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A* heat transfer surface 

; 
specific heat 
flow capacitance ratio 

h heat transfer coefficient 
L exchanger length 
M mass of exchanger 
m mass flow rate 
N dimensionless exchanger length 
NTU number of transfer units 
R heat transfer resistance ratio 

s Laplace transform parameter 
t dimensionless time variable 

NOMENCLATURE 

T dimensionless temperature 
7 transformed dimensionless temperature 
X, _r dimensionless space variab!es. 

Greek symbols 

:> i space variables 
5 time variable. 

Subscripts 

“h 
prime fluid 
secondary fluid 

W solid wall. 

formed temperatures expressed in the form of a power 
series are specialized in order to describe step, ramp 
and exponential responses. Owing to these trans- 

formed temperatures expressed in the form of a power 
series with regularization, it is evident that they are 
easily written in a computational program. The trans- 

formed temperatures of the core wall and both fluids 
in the present work are easily inverted to the physical 
quantities using the numerical inversion method of 

the Laplace transform proposed by Honig and Hirdes 
[8]. It can be found from the present analysis that the 
temperature responses of the core wall and both fluids 
at a specific time and position can be calculated using 

the present technique without any difficulty. For this 
case, the present method has considerable savings in 
computer time. In addition, the power series in the 
present work has a fast rate of convergence. A com- 

parison of the present solutions and those given by 
Spiga and Spiga [2] is made. No difference between 
them is found. This conclusion shows that the present 
method has good accuracy and efficiency. 

ANALYSIS 

The dynamic response of cross-flow heat ex- 
changers with walls separating the two fluid streams 

is investigated. Stream ‘a’ flows through a set of tubes 
or plates, arranged in a bank, however stream ‘b’ 
threads its way through the spaces at right angles to 

the bank. The mathematical model is developed resort- 
ing to the simplifying assumptions as follows [2,6,7] : 

(a) neither fluid is mixed ; 
(b) the physical properties and the fluid capacity 

rates are independent of time, position and tem- 

perature ; 
(c) the thermal conductances on both sides are 

constant and inclusive of wall thermal resistance and 
fouling ; 

(d) the exchanger shell or shroud is adiabatic ; 
(e) the fluid velocity is constant in each flow pass- 

age ; 
(f) conduction through the fluid is negligible ; 

(g) heat transfer rate per unit area and surface con- 
figurations are constant ; 

(h) the heat generation and viscous dissipation 

within the fluids are negligible ; 
(i) the ratios of the thermal capacities of both fluids 

to the core wall thermal capacity are negligible, i.e. it 

is typical for gas-to-gas exchange units. 

The dimensionless space and time-independent 
variables are defined for generating the equations of 

such problems as 

(14 

(lb) 

Then, applying the energy equation to both fluids and 
the wall, we have three simultaneous partial differ- 
ential equations in the coordinate system [2] 

ST, 
at+(l+R)T,+ = T,+RT, @a) 

PC) 

for t > 0,O < x < N, and 0 < _V < Nb. 
The corresponding initial and inlet conditions of 

equations (2) are given as 

T,(x,Y,O) = T,(x,y,O) = T&,_v,O) = 0 (3a) 

Ta(O,y, 0 = cp(4 (3b) 

Tb(x, 0, t) = 0 (3c) 

where the dimensionless physical parameters R, E, N,, 
N,, and NTU are defined respectively as 
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(44 

(4c) 

W) 

where it is seen from equations (4) that only three of 
them are independent. 

The above model equations show that only the inlet 
condition of one fluid is perturbed. For simplicity, 
assume that such a perturbation is uniform in the 
plane of the inlet section. 

MATHEMATICAL FORMULATION 

The Laplace transform of Z’cc(x, y, t) corresponding 
to the dimensionless time with the complex parameter 
s and its inversion formula are defined as 

cu 
%x(x, y, s) = L- ’ { Ta(x, y, t)> = 

s 
Ta(x, y, t) e-” dt 

0 

(54 

Ta(x,y, t) = L-‘{i%(x,y,s)} (5b) 

where 01 = w, a, b. s is the Laplace transform par- 
ameter. 

Taking the Laplace transform of equations (2), (3b) 
and (3~) with initial condition (3a) yields 

W 

with the transformed boundary conditions 

i 

m 
Z(O,_Y,s) = @7(s) = q(t) e-“’ dr (6d) 

0 

Fb(& 0, s) = 0. (64 

Substitu~on of equation (6a) into equations (6b) and 
(SC) can reduce the problem to a set of first-order 
partial differential equations as 

(74 

U’b) 

1 
/i=l-- 

l+s+R 
(7c) 

R 
B=- 

I+s+R 

R 
C= l------ 

1 +s+R 

1 
D=-----. 

I+s+R 
(7f) 

These equations are less complex than equations 
(2) since they do not depend upon the dimensionless 
time. Thus, the problem has now been reduced to 
solve equations (7a) and (7b) for p* and Fb. 

The function F&(x, y, s) can be expressed in the 
form of a power series as described below 

Fa(x, y, s) = Q(s) + ii: Ok(Y, SIX”. (8) 
k= L 

It is seen that equation (8) satisfies the transformed 
boundary condition (6d). 

Substituting equation (8) into equation (7a) gives 

F&,&s) = f $ &(y,s)kXk- ’ 
k- I 

Substituting equations (8) and (9) into equation 
(7b) and collecting the coefficients of successive pow- 
ers of x: yields the following form : 

da, 
dy +Ca, -(BD-CA)@(s) 1 

A da, 
~- 

+k+l dy 1 Xk =o. (10) 

The expression of equation (10) implies that the 
coefficients of all powers of x must vanish inde- 
pendently. The vanishing of the coefficient of xk, 
k > 0, in equation (lo), gives the following recurrence 
formula : 

da1 
dy +Cal = @D-CA)@ 

da,+ 1 
---+cak+i = 

dv 
&(i3D-CA) 

UW 

A dak 
--- kZ 1. (Ilb) 

k+l dy’ 

where 
Assume that the functions a,, k z 1, can be ex- 

pressed as 
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u, (y, s) =.f’, (s) +p, (s) e c’ 
rr(.s) = 

u,o’,.s) =.~~(s)+(P~(s)+Y~(.s)~‘) cc’ 1 
a,(.v,.s) =.f;(S)+(p?(S)+q3(S).1.+1.~(S)C’Z) e L I I 

.X,(S) = 3 
/ 

5 B/h,- ; (.is,) 

a4t.Y, 4 =./-4(s) + (P‘t(S) +q4tsb 

+T4(.s)~Z+sq(.s)?.?) c (’ (12) t;(s) = 4: 5 BDS,. 
(13e1 

Substituting equations (I 2) and (I 3) into equation 
(8) and arranging yields 

By the direct substitution of equations (I 2) into 
equations (11) one obtains T,!(.L.v. .s) = c&s) {d-c ‘I’ ci 

.f&) = & (BD- CA)*$ 
I. _ 

f;(s) = & (BD-CA)3@ 

s‘)(s) = . 314 BDY, 

f’s(s) = &(BD-CA)‘@ 

P5@) = - ;! A5@-.fi 

q5(s) = ;i?Dp,- ;ql 

where 
(13a) 

BD - C’il 
q=- 

c 
.Y 

Substituting equation (14) into equation (7a) and 
rearranging yields the result of ?,,(x. .r, s) as 

Substitution of equations (14) and (15) into equa- 
tion (6a) yields F_,(x, y, s) as 

ASYMPTOTIC BEHAVIOUR 

It is difficult to express equations (14)-( 16) in terms 
of elementary functions of t analytically. However. 
there are simple asymptotic solutions. Expansions for 
small values of t can be deduced from the behaviour 
of expressions (14))( 16) for 1.~1 D 1. Thus, the asymp- 

(I 3d) totic values of r,, T,, and T, for small values of t arc 

given as 
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+[e-‘-e-“-Y]L-‘~~(s)~D/C). (17~) 

The a.bove expressions are exact for small values of 
t, but they will not be of practical use when t >> 1. The 
steady-state temperatures of both fluids and the core 
wall are determined by the behaviour of equations 
(14)-(16) in the neighbourhood of the origin in the 
complex domain. For s -+ 0, equations (14)-(16) give 

RESULTS AND DISCUSSION 

The numerical inversion of Laplace transforms pro- 
posed by Honig and Hirdes [8] can be applied to invert 
the transformed temperatures Fa,, r, and ?_,, shown 
in equations (14)-(16>, to the results in the physical 
quantities. The method for the acceleration of con- 
vergence, such as the Shanks transformation [9], may 
be employed to calculate the sum of the series expan- 
sions, shown in equations (14)-(16), when they are 
slowly convergent. The explicit analytical expressions 
for ?‘a(x, y, s), i”,(x, y, s) and pW(x, y, s) have been 
processed for several meaningful choices of q(t) in 
order to simulate the most common transient oper- 
ations. In particular the step response (rp = l), ramp 
response (q = at) and exponential response 

(P = exp (art)) will be considered. A much wider range 
of possible transient responses is covered by these 
results. In the illustrative examples, CC is taken to be 
unity in the ramp and exponential responses. The 
parameters N, and N,, are equal to 2. For the present 
problem Spiga and Spiga [2] obtained the analytical 
solutions and also showed the series representation of 
the exponential response for R = 1. However, their 
inversive work of the transformed temperatures is 
complex and difficult. Moreover, their analytical 

results are limited in the present heavier restrictions, 
as shown in equations (3). 

It is seen that the series expansions in equations 
(14)-(16) are very simple and regular. This statement 
imphes that the transformed results shown in equa- 
tions (14)-( 16) are easily expressed in a computational 
program even though the value of v(t) is arbitrarily 
chosen. Thus, their numerical calculations are vety 
inexpensive in terms of computation time. Further- 
more, the series representation of equations (14)-(16) 
can be applied to obtain the overall output of the gas- 
to-gas cross-flow heat exchangers for arbitrary choices 
of q(t) without any difficulty. The asymptotic values 
for t -+ 00 in the step response reproduced are in good 
agreement with previous results given by Baclic and 
Heggs [l] and Spiga and Spiga [2]. The exit tem- 
peratures of T, and T, corresponding to R = 1 and 
N, = Nb = 2 ate shown in Figs. l-6 for the step, tamp 

0.7 , I 

0.6 

a.0 L 1 1 I J 
0.0 0.5 1.0 1.5 2.0 

FIG. 1. Outlet temperature distribution of the primary fluid 
for a step response with R = 1. 
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FIG. 2. Outlet temperature distribution of the secondary fluid 
for a step response with R = 1. 
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2 l-----------------i 
0.0 

0.0 0.5 1 .o 1.5 2.0 

FIG. 3. Outlet temperature distribution of the primary fluid 
for a ramp response with R = 1. 

3.0 r-----I 

0.0 
0.0 0.5 1.0 1.5 2.0 

FIG. 4. Outlet temperature distribution of the secondary fluid 
for a ramp response with R = 1. 

FIG. 6. Outlet temperature distribution of the secondary fluid 
for an exponential response with R = 1. 

and exponential responses, respectively. The results 
for the step and ramp responses shown in Figs. l-4 
agree well with those contained in Figs. 7-10 of Spiga 
and Spiga [2]. This conclusion implies that the present 
method has good accuracy. The temperature of the 
core wall is not expressed in the present paper. 
However, it is not difficult to invert the transformed 
temperature of the core wall ?,&, y, s), as shown in 
equation (l&z), to the physical quantity by using the 
numerical inversion of the Laplace transform [8] if 
T,,,(x, y, t) is required. 

The exit temperatures of T, and Tb for the step 
response for R = 0.5 and 2 are respectively shown in 
Figs. 7-10. Comparisons for these cases are imposs- 
ible because there are no available data in the litera- 
ture. However, it is seen that higher values of R imply 

a 
L 2 

1.5 

1 : 1 

I 

0.5 
0.3 i 

L-c--=--:: 

f==-------e-:-t---- 0.1 1 
/ 

10 -” , , , 
0.0 0.5 1.0 1.5 2.0 

FIG. 5. Outlet temperature distribution of the primary Auid 
for an exponential response with R = 1. 

10 

/ 
I 

i 

0.0 0.5 1.0 1.5 2.0 

smaller (MC), and higher (hA*), for the fixed values 

of N,, N,,, @A*), and (wzc)~. Thus, the temperature 
at the outlet positions of both fluids will be increased 
with decreasing the value of R for N, = N, = 2. These 
results can be found from Figs. 7 to 10. This con- 
clusion implies that the temperature response of 
R = 0.5 is faster approaching the steady state than 
that of R = 2. To avoid duplication, the effect of R 
on the transient behaviours of T, and Tb for the ramp 
and exponential responses will not be investigated. 

CONCLUSION 

The two-dimensional transient response of gas-to- 
gas cross-flow heat exchangers is investigated ana- 
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FIG. 7. Outlet temperature distribution of the primary fluid 
for a step response with R = 0.5. 

0.8 , I 

FIG. 8. Outlet temperature distribution of the secondary fluid 
for a step response with R = 0.5. 

FIG. 10. Outlet temperature distribution of the secondary 
fluid for a step response with R = 2. 

lytically. The method of the single Laplace transform 
method with respect to time in conjunction with the 
power series technique is applied to obtain the numeri- 
cal solutions of such a problem. It is seen that the 
application of this technique to such problems is sim- 
ple and can determine F*,, Fr, and p,,, with regular 
forms. Thus, the transformed temperatures are easily 
expressed in a computational program for arbitrary 
choices of rp(t) and R without any difficulty. 
Moreover, the present numerical calculations are also 
very inexpensive in terms of computational time, and 
the temperature responses of the core wall and both 
fluids, at a specific time and position, can also be cal- 
culated. The present results are compared with the 
analytical results of Spiga and Spiga [2]. The present 
method shows satisfactory results for the present 
problem. It can be concluded that the present method 
has good accuracy and efficiency. 

0.0.0 
* I t 

0.5 1 .o 1.5 2.0 

FIG. 9. Outlet temperature distribution of the primary fluid 
for a step response with R = 2. 
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METHODE SIMPLE POUR LA REPONSE VARlABLE D’ECHANGEUR DE CHALEUR 
A COURANTS CROISES GAZ-GAZ SANS AUCUN MELANGE 

R&sum&On etudie analytiquement la reponse variable bidimensionnelle des Cchangeurs de chaleur li 
courants croises gaz-gaz en utilisant la methode de la transform&e de Laplace pour des variations tem- 
porelles arbitraires de la temperature d’entrte du Iluide primaire. Des solutions analytiques pour la 
distribution de la temperature transform&e de la paroi et de chaque guide sont present&es sous la forme 
d’une strie de puissances avec le rapport des capacites thermiques, le nombre d’unites de transfert, la 
resistance au transfert thermique et les rapports des debits calorifiques des fluides. Toutes les temperatures 
transform&es sont aisement inversees pour obtenir les grandeurs physiques en utilisant lc schema de 
I’inversion numerique de la transformte de Laplace. Comparee a d’autres resolutions analytiques, la 

methode prtsente a bonne efficacite et precision. 

EIN EINFACHES VERFAHREN ZUR BERECHNUNG DES DYNAMISC’HEN 
VERHALTENS EINES GAS-KREUZSTROMWARMEUBERTRAGERS OHNE 

QIJERVERMISCHUNG 

Zusammenfassung- Das zweidimensionale Ubergangsverhalten eines Gas, Gas-Krcuzstromwarme- 
iibertragers wird analytisch untersucht. Dabei wird das Verfahren einer einzelnen Laplace-Transfor- 
mation fur beliebige zeitliche Anderungen der anfanglichen Fluid-Eintrittstemperatur angewandt. Fur 
die transformierten Temperaturverteilungen an den inneren Wanden und in beiden Fluiden werdcn analy- 
tische Liisungen in Gestalt eines Potenzansatzes angegeben, abhangig vom Verhiltnis der Warme- 
kapazitaten, von NTU, vom Wirmeiibergangswiderstand und vom Verhaltnis der Warmekapdzitats- 
strome. Die transformierten Temperaturen fur die WHnde und die beiden Fluide kijnnen leicht unter 
Verwendung eines numerischen Inversionsverfahrens der Laplace-Transformation in den physikalischen 
Bereich zuriicktransformiert werden. lm Vergleich zu anderen andlytischen Losungen zeigt das vorgestelltc 

Verfahren hohe Genauigkeit und Effizienz. 

IIPOCTOn MET04 OTDIE~EJIEHMR I-IEPEXOAHOI? XAPAKTEPHCTWKB 
I-A30-I’A30BbIX IIEPEKPECTHbIX TEITJIOOBMEHHI,iKOB 

kIiOTaUll~~eTO~OM onHoKpaTHor0 npeo6pa30Baiiarl JIannaca aIiansiTmeCKt4 accnenyeTcn AByMep- 

Has nepexonHaa xapaKTepnCTaKara30-rasosbrx nepeKpecTHbIx Tenn006hIeHHk%K08 * cnygae npousBonb- 

HMX kmbieHeH&iii TeMnepaTypbI nepBHvHof0 TeIIJIOHOCATenll Ha Bxone. .kuniTllreCKHe peruemir iwIn 

nso6pamemr1 TeMnepaTypbIx paCnpneJIeHllti CTeHKR li o6eax pa6owx CpeAnpeAcTaBneHbr B Bate CTe- 

neHHbIXpIIAOB,BKnH)YaH3mUX OTHOmeHHIl TenJlOeMKOCTeii A COnpOTHBneHlleTe~JIOIle~HOCy.~T~COOT- 

HomemiK B wo6paxeaaKx nerKo o6pamaIoTcK c wnonb3oBaHUeM WiCneHHOii CXeMbI o6pameHuK 

IIpCO6pa30BaHHR flan,IaCa. no ‘JaBHe"mO C ApyrHMll aHaJIUTHWCKBMR ~IIIeHEIKMH IIpWJIO~eHHbIii 

MeTOn 06JIaAaeTBbICOKOiiTO~HOCTbM HY$+eKTIIBHOCTbH). 


